Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.264
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1328741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665877

RESUMO

Polycystic ovary syndrome (PCOS) is a common systemic disorder related to endocrine disorders, affecting the fertility of women of childbearing age. It is associated with glucose and lipid metabolism disorders, altered gut microbiota, and insulin resistance. Modern treatments like pioglitazone, metformin, and spironolactone target specific symptoms of PCOS, while in Chinese medicine, moxibustion is a common treatment. This study explores moxibustion's impact on PCOS by establishing a dehydroepiandrosterone (DHEA)-induced PCOS rat model. Thirty-six specific pathogen-free female Sprague-Dawley rats were divided into four groups: a normal control group (CTRL), a PCOS model group (PCOS), a moxibustion treatment group (MBT), and a metformin treatment group (MET). The MBT rats received moxibustion, and the MET rats underwent metformin gavage for two weeks. We evaluated ovarian tissue changes, serum testosterone, fasting blood glucose (FBG), and fasting insulin levels. Additionally, we calculated the insulin sensitivity index (ISI) and the homeostasis model assessment of insulin resistance index (HOMA-IR). We used 16S rDNA sequencing for assessing the gut microbiota, 1H NMR spectroscopy for evaluating metabolic changes, and Spearman correlation analysis for investigating the associations between metabolites and gut microbiota composition. The results indicate that moxibustion therapy significantly ameliorated ovarian dysfunction and insulin resistance in DHEA-induced PCOS rats. We observed marked differences in the composition of gut microbiota and the spectrum of fecal metabolic products between CTRL and PCOS rats. Intriguingly, following moxibustion intervention, these differences were largely diminished, demonstrating the regulatory effect of moxibustion on gut microbiota. Specifically, moxibustion altered the gut microbiota by increasing the abundance of UCG-005 and Turicibacter, as well as decreasing the abundance of Desulfovibrio. Concurrently, we also noted that moxibustion promoted an increase in levels of short-chain fatty acids (including acetate, propionate, and butyrate) associated with the gut microbiota of PCOS rats, further emphasizing its positive impact on gut microbes. Additionally, moxibustion also exhibited effects in lowering FBG, testosterone, and fasting insulin levels, which are key biochemical indicators associated with PCOS and insulin resistance. Therefore, these findings suggest that moxibustion could alleviate DHEA-induced PCOS by regulating metabolic levels, restoring balance in gut microbiota, and modulating interactions between gut microbiota and host metabolites.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Resistência à Insulina , Moxibustão , Síndrome do Ovário Policístico , Ratos Sprague-Dawley , Animais , Síndrome do Ovário Policístico/terapia , Síndrome do Ovário Policístico/metabolismo , Feminino , Moxibustão/métodos , Ratos , Desidroepiandrosterona/metabolismo , Glicemia/metabolismo , Insulina/sangue , Insulina/metabolismo , Metformina/farmacologia , Testosterona/sangue , Ovário/metabolismo , Ovário/microbiologia
2.
J Mol Histol ; 55(2): 187-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38478190

RESUMO

Polycystic ovary syndrome (PCOS) is an endocrine disease, and its pathogenesis and treatment are still unclear. Hexokinase domain component 1 (HKDC1) participates in regulating mitochondrial function and glycolysis. However, its role in PCOS development remains unrevealed. Here, female C57BL/6 mice were intraperitoneally injected with dehydroepiandrosterone (DHEA; 60 mg/kg body weight) to establish an in vivo model of PCOS. In vitro, KGN cells, a human ovarian granular cell line, were used to explore the potential mechanisms. DHEA-treated mice exhibited a disrupted estrus cycle, abnormal hormone levels, and insulin resistance. Dysfunction in mitochondria and glycolysis is the main reason for PCOS-related growth inhibition of ovarian granular cells. Here, we found that the structure of mitochondria was impaired, less ATP was generated and more mitochondrial Reactive Oxygen Species were produced in HKDC1-silenced KGN cells. Moreover, HKDC1 knockdown inhibited glucose consumption and decreased the production of glucose-6-phosphate and lactic acid. Conclusively, HKDC1 protects ovarian granulocyte cells from DHEA-related damage at least partly by preserving mitochondrial function and maintaining glycolysis.


Assuntos
Síndrome do Ovário Policístico , Feminino , Camundongos , Humanos , Animais , Síndrome do Ovário Policístico/metabolismo , Hexoquinase/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/metabolismo , Granulócitos/metabolismo , Granulócitos/patologia
3.
Eur J Med Chem ; 269: 116296, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38467086

RESUMO

Steroid hybrids have emerged as a type of advantageous compound as they could offer improved pharmacological and pharmaceutical properties. Here, we report a series of novel peptide-dehydroepiandrosterone hybrids, which would effectively induce endoplasmic reticulum stress (ERS) and lead to apoptosis with outstanding in vitro and in vivo anti-melanoma effects. The lead compound IId among various steroids conjugated with peptides and pyridines showed effective in vivo activity in B16 xenograft mice: in medium- and high-dose treatment groups (60 and 80 mg/kg), compound IId would significantly inhibit the growth of tumours by 98%-99% compared to the control group, with the highest survival rate as well. Further mechanism studies showed that compound IId would damage the endoplasmic reticulum and upregulate the ERS markers C/EBP homologous protein (CHOP) and glucose-regulated protein 78 (GRP78), which could further regulate caspase and Bcl-2 family proteins and lead to cell apoptosis. The compound IId was also proven to be effective in inhibiting B16 cell migration and invasion.


Assuntos
Apoptose , Retículo Endoplasmático , Humanos , Camundongos , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Peptídeos/farmacologia , Desidroepiandrosterona/metabolismo , Desidroepiandrosterona/farmacologia
4.
Environ Pollut ; 345: 123329, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281572

RESUMO

The biological pathways linking lead exposure to adverse outcomes are beginning to be understood. Rodent models suggest lead exposure induces dysfunction within the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid regulation, a primary physiological stress response system. Over time, HPA axis and glucocorticoid dysfunction has been associated with adverse neurocognitive and cardiometabolic health, much like lead exposure. This systematic review utilized PRISMA guidelines to synthesize the literature regarding associations between lead exposure and downstream effector hormones of the HPA axis, including cortisol, a glucocorticoid, and dehydroepiandrosterone (DHEA), a glucocorticoid antagonist. We additionally determined the state of the evidence regarding lead exposure and allostatic load, a measure of cumulative body burden resultant of HPA axis and glucocorticoid dysfunction. A total of 18 articles were included in the review: 16 assessed cortisol or DHEA and 3 assessed allostatic load. Generally, the few available child studies suggest a significant association between early life lead exposure and altered cortisol, potentially suggesting the impact of developmental exposure. In adulthood, only cross sectional studies were available. These reported significant associations between lead and reduced cortisol awakening response and increased cortisol reactivity, but few associations with fasting serum cortisol. Two studies reported significant associations between increasing lead exposure and allostatic load in adults and another between early life lead exposure and adolescent allostatic load. The paucity of studies examining associations between lead exposure and allostatic load or DHEA and overall heterogeneity of allostatic load measurements limit conclusions. However, these findings cautiously suggest associations between lead and dysregulation of physiological stress pathways (i.e., glucocorticoids) as seen through cortisol measurement in children and adults. Future research would help to elucidate these associations and could further examine the physiological stress pathway as a mediator between lead exposure and detrimental health outcomes.


Assuntos
Glucocorticoides , Hidrocortisona , Adulto , Criança , Adolescente , Humanos , Glucocorticoides/toxicidade , Glucocorticoides/metabolismo , Hidrocortisona/metabolismo , Chumbo/toxicidade , Chumbo/metabolismo , Sistema Hipotálamo-Hipofisário , Estudos Transversais , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico , Desidroepiandrosterona/metabolismo , Estresse Psicológico
5.
J Steroid Biochem Mol Biol ; 238: 106452, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38160767

RESUMO

CYP68JX, a P450 hydroxylase, derived from Colletotrichum lini ST-1 is capable of biotransforming dehydroepiandrosterone (DHEA) to 3ß,7α,15α-trihydroxy-5-androstene-17-one (7α,15α-diOH-DHEA). Redox partners and cofactor supply are important factors affecting the catalytic activity of CYP68JX. In this study, the heterologous expression of CYP68JX in Saccharomyces cerevisiae BY4741 was realized resulting in a 17.1% target product yield. In order to increase the catalytic efficiency of CYP68JX in S. cerevisiae BY4741, a complete cytochrome P450 redox system was constructed. Through the combination of CYP68JX and heterologous CPRs, the yield of the target product 7α,15α-diOH-DHEA in CYP68JX recombinant system was increased to 37.8%. Furthermore, by adding NADPH coenzyme precursor tryptophan of 40 mmol/L and co-substrate fructose of 20 g/L during the conversion process, the catalytic efficiency of CYP68JX was further improved, the target product yield reached 57.9% which was 3.39-fold higher than initial yield. Overall, this study provides a reference for improving the catalytic activity of P450s.


Assuntos
Desidroepiandrosterona , Saccharomyces cerevisiae , Desidroepiandrosterona/metabolismo , Hidroxilação , NADP/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Oxirredução , Esteroides
6.
ACS Appl Mater Interfaces ; 15(43): 50034-50046, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851924

RESUMO

Measuring bioactive stress hormones, including cortisol and dehydroepiandrosterone (DHEA), allows for evaluating the hypothalamic-pituitary-adrenal (HPA) axis functioning, offering valuable insights into an individual's stress response through adrenocortex stress profiles (ASPs). Conventional methods for detecting steroid hormones involve sample collections and competitive immunoassays, which suffer from drawbacks such as time-consuming labeling and binding procedures, reliance on unstable biological receptors, and the need for sophisticated instruments. Here, we report a label-free and external redox reagent-free amperometric assay directly detecting sweat cortisol and DHEA levels on the skin. The approach utilizes multitarget sensors based on redox-active molecularly imprinted polymers (redox MIPs) capable of selectively binding cortisol and DHEA, inducing changes in electrochemical redox features. The redox MIP consists of imprinted cavities for specific capture of cortisol or DHEA in a poly(pyrrole-co-(dimethylamino)pyrrole) copolymer containing hydrophobic moieties to enhance affinity toward steroid hormones. The polymer matrix also incorporates covalently linked interpenetrating redox-active polyvinylferrocene, offering a stable electrochemical redox feature that enables sensitive current change in response to the target capture in the vicinity. The multiplexed sensor detects cortisol and DHEA within 5 min, with detection limits of 115 and 390 pM, respectively. Through the integration of redox MIP sensors into a wireless wearable sensing system, we successfully achieved ambulatory detection of these two steroid hormones in sweat directly on the skin. The new sensing method facilitates rapid, robust determination of the cortisol-DHEA ratio, providing a promising avenue for point-of-care assessment of an individual's physiological state.


Assuntos
Impressão Molecular , Dispositivos Eletrônicos Vestíveis , Desidroepiandrosterona/metabolismo , Hidrocortisona , Polímeros , Pirróis
7.
Methods Enzymol ; 689: 67-86, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802583

RESUMO

Cytochrome P450 aromatase (AROM) and steroid (estrone (E1)/dehydroepiandrosterone (DHEA)) sulfatase (STS) are the two key enzymes responsible for the biosynthesis of estrogens in human, and maintenance of the critical balance between androgens and estrogens. Human AROM, an integral membrane protein of the endoplasmic reticulum, is a member of the Fe-heme containing cytochrome P450 superfamily having a cysteine thiolate as the fifth Fe-coordinating ligand. It is the only enzyme known to catalyze the conversion of androgens with non-aromatic A-rings to estrogens characterized by the aromatic A-ring. Human STS, also an integral membrane protein of the endoplasmic reticulum, is a Ca2+-dependent enzyme that catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, the precursors of the most potent forms of estrogens and androgens, namely, 17ß-estradiol (E2), 16α,17ß-estriol (E3), testosterone (TST) and dihydrotestosterone (DHT). Expression of these steroidogenic enzymes locally within various organs and tissues of the endocrine, reproductive, and central nervous systems is the key for maintaining high levels of the reproductive steroids. Thus, the enzymes have been drug targets for the prevention and treatment of diseases associated with steroid hormone excesses, especially in breast and prostate malignancies and endometriosis. Both AROM and STS have been the subjects of vigorous research for the past six decades. In this article, we review the procedures of their extraction and purification from human term placenta are described in detail, along with the activity assays.


Assuntos
Aromatase , Esteril-Sulfatase , Feminino , Humanos , Gravidez , Androgênios/metabolismo , Aromatase/metabolismo , Desidroepiandrosterona/metabolismo , Estrogênios/metabolismo , Estrona/metabolismo , Proteínas de Membrana/metabolismo , Placenta/metabolismo , Esteril-Sulfatase/metabolismo
8.
Methods Enzymol ; 689: 89-119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802584

RESUMO

The enzyme 3ß-hydroxysteroid dehydrogenase-1 (3ßHSD1), encoded by the gene HSD3B1, plays an essential role in the peripheral conversion of 3ß-OH, Δ5-steroids to 3-keto, Δ4-steroids. In human physiology, the adrenal produces dehydroepiandrosterone (DHEA) and DHEA-sulfate, which are major precursors for the biosynthesis of potent androgens and estrogens. DHEA is converted by 3ßHSD1 and subsequently is converted by steroid-5α-reductase to potent androgens or by aromatase to estrogens. Assessment of 3ßHSD1 is therefore critical under various conditions. In this chapter, we detail several approaches to assessing 3ßHSD1. First, we describe a genotyping protocol for the identification of a common missense-encoding variation that regulates 3ßHSD1 cellular metabolic activity. This protocol distinguishes between the HSD3B1(1245A) and the HSD3B1(1245C) allele which have lower and higher metabolic activity, respectively. Second, we detail mass spectrometry approaches to determining 3ßHSD1 activity using stable isotope dilution. Third, we describe methods for using tritiated DHEA and high performance liquid chromatography coupled with a beta-RAM to also determine 3ßHSD1 activity. Together, we provide multiple methods of directly assessing 3ßHSD1 activity or anticipated 3ßHSD1 activity.


Assuntos
Androgênios , Estrogênios , Humanos , Androgênios/metabolismo , Complexos Multienzimáticos/metabolismo , Desidroepiandrosterona/metabolismo , Esteroides
9.
J Steroid Biochem Mol Biol ; 232: 106359, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390976

RESUMO

Estetrol (E4) has emerged as a novel and highly promising estrogen for therapeutic use. E4 is a weak natural estrogen produced only in pregnancy. Because of its novelty, there is considerable interest by clinicians in how it is produced in pregnancy. Although the fetal liver plays a key role in its production, the placenta is also involved. A current view is that estradiol (E2) formed in the placenta enters the fetal compartment and is then rapidly sulfated. E2 sulfate then undergoes 15α-/16α-hydroxylation in the fetal liver thereby forming E4 sulfate (phenolic pathway). However, another pathway involving 15α,16α-dihydroxy-DHEAS formed in the fetal liver and converted to E4 in the placenta also plays a significant role (neutral pathway). It is not known which pathway predominates, but both pathways appear to be important in E4 biosynthesis. In this commentary, we summarize the well-established pathways in the formation of estrogens in the nonpregnant and pregnant female. We then review what is known about the biosynthesis of E4 and describe the 2 proposed pathways involving the fetus and placenta.


Assuntos
Estetrol , Gravidez , Humanos , Feminino , Estetrol/metabolismo , Estrogênios/metabolismo , Estradiol/metabolismo , Desidroepiandrosterona/metabolismo , Placenta/metabolismo
10.
Prostate ; 83(13): 1306-1309, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321973

RESUMO

BACKGROUND: Conversion of adrenally produced dehydroepiandrosterone (DHEA) to the potent androgen dihydrotestosterone (DHT) is an important mechanism by which prostate cancer reaches castration resistance. At the start of this pathway is a branch point at which DHEA can be converted to Δ4 -androstenedione by the enzyme 3ß-hydroxysteroid dehydrogenase (3ßHSD) or to Δ5 -androstenediol by 17ßHSD. To better understand this process, we studied the kinetics of these reactions in cells. METHODS: Prostate cancer cells (LNCaP cell line) were incubated with steroids (DHEA and Δ5 -androstenediol) over a range of concentrations and the steroid metabolism reaction products were measured by mass spectrometry or by high-performance liquid chromatography to determine reaction kinetics. To confirm the generalizability of results, experiments were also performed in JEG-3 placental choriocarcinoma cells. RESULTS: The two reactions displayed very different saturation profiles, with only the 3ßHSD-catalyzed reaction beginning to saturate within a physiological substrate concentration range. Strikingly, incubating LNCaP cells with low (in the ~10 nM range) concentrations of DHEA resulted in a large majority of the DHEA undergoing 3ßHSD-catalyzed conversion to Δ4 -androstenedione, whereas high concentrations of DHEA (in the 100s of nM range) resulted in most of the DHEA undergoing 17ßHSD-catalyzed conversion to Δ5 -androstenediol. CONCLUSION: Contrary to expectations from previous studies that used purified enzyme, cellular metabolism of DHEA by 3ßHSD begins to saturate in the physiological concentration range, suggesting that fluctuations in DHEA concentrations could be buffered at the downstream active androgen level.


Assuntos
Androgênios , Neoplasias da Próstata , Humanos , Masculino , Androstenodióis , Androstenodiona/metabolismo , Linhagem Celular Tumoral , Desidroepiandrosterona/metabolismo , Neoplasias da Próstata/patologia
11.
Org Biomol Chem ; 21(15): 3172-3176, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36950968

RESUMO

Menarandroside A, which bears a 12α-hydroxypregnenolone steroid backbone, was isolated from the plant, Cynanchum menarandrense. Treatment of extracts from this plant containing menarandroside A against secretin tumor cell line (STC-1) intestinal cells, resulted in an increased secretion of glucagon-like peptide 1 (GLP-1), a peptide that plays a role in the regulation of blood sugar levels. Increase in GLP-1 is beneficial for the treatment of type 2 diabetes. We disclose the synthesis of menarandroside A from dehydroepiandrosterone (DHEA). Key features of this synthesis include: (i) Wittig reaction of the C17-ketone of a 12-oxygenated DHEA derivative to introduce the C17-acetyl moiety, and (ii) the stereoselective reduction of a C12-keto intermediate bearing an sp2-center at C17 to yield the C12α-hydroxy group. In addition, an oxidation of a methyl enol ether derivative to an α-hydroxy methyl ester using tetrapropylammonium perruthenate (TPAP) and N-methyl-morpholine-N-oxide (NMO) was discovered.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Esteroides , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Oxirredução , Desidroepiandrosterona/metabolismo
12.
Iran J Med Sci ; 48(2): 187-197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36895462

RESUMO

Background: Polycystic ovary syndrome (PCOS) is the most common reproductive dysfunction in premenopausal women. PCOS is associated with oxidative stress (OS), which is the main risk factor for renal diseases. This study aimed to investigate the mechanisms responsible for renal injury in a hyperandrogenemic female rat model. Methods: This study was conducted from December 2019 to September 2021 at Shiraz Nephro-Urology Research Centre, Shiraz University of Medical Sciences (Shiraz, Iran). Thirty female Sprague-Dawley rats were randomly divided into three groups (n=10), namely control, sham, and dehydroepiandrosterone (DHEA). Plasma total testosterone, plasma creatinine (Cr), and blood urea nitrogen (BUN) levels were measured. In addition, total oxidant status (TOS), total antioxidant capacity (TAC), oxidative stress index (OSI), and histopathological changes in the ovaries and kidneys were determined. Data were analyzed using the GraphPad Prism software, and P<0.05 was considered statistically significant. Results: Plasma total testosterone levels increased by nine-fold in DHEA-treated rats compared to controls (P=0.0001). Administration of DHEA increased Cr and BUN levels and caused severe renal tubular cell injury. In addition, plasma and tissue (kidney and ovary) TAC levels decreased significantly, but TOS levels and OSI values were significantly increased (P=0.019). Significant damage to both glomerular and tubular parts of the kidney and ovarian follicular structure was observed in the DHEA group. Conclusion: Hyperandrogenemia caused systemic abnormalities through OS-related mechanisms and damaged renal and ovarian tissues. DHEA treatment in rat models is recommended to study the mechanisms that mediate PCOS-associated renal injury.


Assuntos
Hiperandrogenismo , Nefropatias , Síndrome do Ovário Policístico , Humanos , Ratos , Feminino , Animais , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Ratos Sprague-Dawley , Hiperandrogenismo/complicações , Hiperandrogenismo/metabolismo , Hiperandrogenismo/patologia , Estresse Oxidativo , Rim , Antioxidantes/metabolismo , Nefropatias/patologia , Testosterona/metabolismo , Desidroepiandrosterona/metabolismo
13.
Drug Dev Res ; 84(2): 226-237, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36621953

RESUMO

This study was implemented to address the role of Roflumilast in polycystic ovary syndrome (PCOS) as well as to discuss its reaction mechanism in vivo and in vitro. In vivo, mice were administrated with 6 mg dehydroepiandrosterone (DHEA) per 100 g body weight and fed with 60% high fat diet to induce PCOS. The expression of phosphodiesterases 4 (PDE4) was assessed with RT-qPCR. The ovary pathology was observed by hematoxylin and eosin staining and follicles were counted. Enzyme-linked immunosorbent assay was adopted for the estimation of progesterone, testosterone and inflammatory factors and lipid accumulation was observed by Oil Red O staining. With the application of reverse transcription-quantitative PCR (RT-qPCR) and western blot, the messenger RNA (mRNA) and protein expressions of low-density lipoprotein receptor (LDLR) was resolved. In vitro, Cell counting kit-8 and flow cytometry analysis were applied for the assessment of cell proliferation and apoptosis. The proliferation- and apoptosis-related proteins were appraised with western blot. Additionally, the expressions of PDE-4 at both mRNA and protein levels were tested with RT-qPCR and western blot. Here, it was discovered that PDE4 was greatly elevated in PCOS mice and DHEA-induced ovarian granulosa cells (KGN). In PCOS mice, PDE4 was negative correlated with progesterone and had positive correlation with testosterone. Roflumilast could enhanced progesterone expression, increased the number of primary follicles, preantral follicles and antral follicles but reduced testosterone and decreased the number of cystic follicles in PCOS mice. It was also testified that Roflumilast could inhibit the release of inflammatory factors and lipid accumulation in PCOS mice. Besides, the proliferation of DHEA-induced KGN cells was enhanced while the apoptosis was declined by Roflumilast, accompanied by elevated contents of PCNA, Ki67 and antiapoptotic protein Bcl-2. Collectively, Roflumilast inhibited inflammation and lipid accumulation in PCOS mice to improve ovarian function and reduce DHEA-induced granulosa cell apoptosis.


Assuntos
Inibidores da Fosfodiesterase 4 , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Progesterona/efeitos adversos , Progesterona/metabolismo , Inibidores da Fosfodiesterase 4/efeitos adversos , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Testosterona/efeitos adversos , Testosterona/metabolismo , Inflamação/metabolismo , Apoptose , Desidroepiandrosterona/efeitos adversos , Desidroepiandrosterona/metabolismo , Lipídeos
14.
J Steroid Biochem Mol Biol ; 227: 106236, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563764

RESUMO

Fungal hydroxylation of steroids is a key step in the industrial production of various steroid drugs. The main enzymes that enable these reactions are Cytochrome P450s (CYP), though very few industrially important CYPs have been identified and characterized. In this study, we identified a CYP enzyme (CYP-N2) and a cytochrome P450 reductase (CPRns) from Nigrospora sphaerica 722 by a combination of transcriptome sequencing and heterologous expression in Pichia pastoris. Gene CYP-N2 co-expressed with CPRns in Pichia pastoris GS115 showed 6ß- and 15α-hydroxylation activities on progesterone. Different hydroxylation specificity of CYP-N2 was observed on different steroid substrates. CYP-N2 showed 1α-hydroxylation on cortisone and 1α-hydroxylation and 6ß-hydroxylation activities on androstenedione (AD). With dehydroepiandrosterone (DHEA) as a substrate, the hydroxylated products of CYP-N2 included 7α-hydroxy-DHEA and 7α,15α-dihydroxy-DHEA. In order to precisely elucidate CYP-N2 biological function and find out the key amino acids influencing its hydroxylation capabilities in the binding pocket, new generation artificial intelligence technology AlphaFold 2 was used to predict the function-structure of CYP-N2 with high reliability. Through molecular docking, it was concluded that the residues almost binding all substrates were located in the same substrate binding pocket and the various hydroxylation abilities might be due to the different binding conformations of different substrates in the binding pocket. Alanine scanning mutagenesis was used to verify key amino acids identified by the molecular docking with steroid substrates. The 128 THR mutation resulted in conversion rate increase for substrates AD and cortisone by 2.6-fold and 2.1-fold respectively. The information obtained in this study is beneficial to facilitating the engineering of more efficient steroid hydroxylases for industrial applications.


Assuntos
Cortisona , Hidroxilação , Simulação de Acoplamento Molecular , Inteligência Artificial , Reprodutibilidade dos Testes , Esteroide Hidroxilases/metabolismo , Esteroides/metabolismo , Androstenodiona/metabolismo , Aminoácidos , Desidroepiandrosterona/metabolismo , Especificidade por Substrato
15.
Poult Sci ; 102(2): 102385, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565630

RESUMO

The incident of lipid metabolism disorders has obviously increased under the undue pursuit of efficiency, which had seriously threatened to the health development of poultry industry. As an important cholesterol-derived intermediate, though dehydroepiandrosterone (DHEA) has the fat-reduction effect in animals and humans, but the underlying mechanism still poorly understood. Herein, the present study aimed to investigate the regulatory effects and its molecular mechanism of DHEA on disturbance of lipid metabolism induced by oleic acid (OA) in primary chicken hepatocytes. The hepatocytes were treated with 0, 0.1, 1, 10 µM DHEA for 4 h, and then supplemented with 0 or 0.5 mM OA stimulation for another 24 h. Our findings demonstrated that DHEA treatment effectively reduced TG content and alleviated lipid droplet deposition in OA-induced hepatocytes. DHEA inhibited the lipogenesis related factors (ACC, FAS, SREBP-1c, and ACLY) mRNA level and increased the lipolysis key factors (CPT-1 and PPARα) mRNA levels. In addition, DHEA obviously elevated the protein levels of CPT-1A, p-ACC, and ECHS1; whereas decreased the protein levels of FAS and SREBP-1 in hepatocytes stimulated by OA. Furthermore, DHEA promoted the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR). Mechanistically, the hepatocytes were pre-treated with AMPK inhibitor compound C or AMPK activator AICAR before addition of DHEA treatment, and the results certified that DHEA activated cAMP/AMPK pathway and which subsequently led the inhibition of mTOR signal, which finally reduced the fat excessive accumulation in OA-stimulated hepatocytes. Collectively, our study unveiled that DHEA protects against the lipid metabolism disorders triggered by OA stimulation through activation of AMPK-mTOR signaling pathway, which prompts the value of DHEA as a potential nutritional supplement in regulating the lipid metabolism and its related disease in poultry.


Assuntos
Proteínas Quinases Ativadas por AMP , Transtornos do Metabolismo dos Lipídeos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Galinhas/genética , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/metabolismo , Hepatócitos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transtornos do Metabolismo dos Lipídeos/veterinária , Mamíferos/genética , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , RNA Mensageiro/genética , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismo
16.
Br J Nutr ; 130(5): 783-792, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36412162

RESUMO

Obese mothers' offspring develop obesity and metabolic alterations in adulthood. Poor postnatal dietary patterns also contribute to obesity and its comorbidities. We aimed to determine whether in obese mothers' offspring an adverse postnatal environment, such as high-fat diet (HFD) consumption (second hit) exacerbates body fat accumulation, metabolic alterations and adipocyte size distribution. Female Wistar rats ate chow (C-5 %-fat) or HFD (maternal obesity (MO)-25 %-fat) from weaning until the end of lactation. Male offspring were weaned on either control (C/C and MO/C, maternal diet/offspring diet) or HFD (C/HF and MO/HF) diet. At 110 postnatal days, offspring were killed. Fat depots were excised to estimate adiposity index (AI). Serum glucose, triglyceride, leptin, insulin, insulin resistance index (HOMA-IR), corticosterone and dehydroepiandrosterone (DHEA) were determined. Adipocyte size distribution was evaluated in retroperitoneal fat. Body weight was similar in C/C and MO/C but higher in C/HF and MO/HF. AI, leptin, insulin and HOMA-IR were higher in MO/C and C/HF v. C/C but lower than MO/HF. Glucose increased in MO/HF v. MO/C. C/HF and MO/C had higher triglyceride and corticosterone than C/C, but lower corticosterone than MO/HF. DHEA and the DHEA/corticosterone ratio were lower in C/HF and MO/C v. C/C, but higher than MO/HF. Small adipocyte proportion decreased while large adipocyte proportions increased in MO/C and C/HF v. C/C and exacerbated in MO/HF v. C/HF. Postnatal consumption of a HFD by the offspring of obese mothers exacerbates body fat accumulation as well as the decrease of small and the increase of large adipocytes, which leads to larger metabolic abnormalities.


Assuntos
Leptina , Efeitos Tardios da Exposição Pré-Natal , Humanos , Ratos , Feminino , Animais , Masculino , Gravidez , Dieta Hiperlipídica/efeitos adversos , Mães , Corticosterona/metabolismo , Ratos Wistar , Fenômenos Fisiológicos da Nutrição Materna , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Peso Corporal , Glucose/metabolismo , Triglicerídeos/metabolismo , Hipertrofia/metabolismo , Insulina/metabolismo , Desidroepiandrosterona/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36427661

RESUMO

Fish scales have been reported to incorporate cortisol over long periods of time and thus provide a promising means of assessing long-term stress in many species of teleost fish. However, the quantification of other stress related hormones has only been accomplished in our previous study conducted in goldfish (Carassius auratus). DHEA is a precursory androgen with anti-stress effects used alongside cortisol to diagnose chronic stress via the cortisol:DHEA ratio in mammals. Included in DHEA's anti-stress mechanisms are changes in the metabolism of cortisol to its inactive metabolite cortisone suggesting the relationships between cortisol, DHEA and cortisone may be additionally informative in the assessment of long-term stress. Therefore, to further explore these concepts in a native fish species and generate more comprehensive comparisons between scale and serum hormone concentrations than was possible in our previous study we implemented a 14-day stress protocol in adult rainbow trout (Oncorhynchus mykiss) and quantified resulting scale and serum cortisol, cortisone and DHEA concentrations. As predicted, elevations in scale concentrations of all hormones were observed in stressed trout compared to controls but were not reflected in serum samples. Significant differences in the cortisol:DHEA and cortisone:cortisol ratios were also found between control and stressed group scales but not serum. These results suggest not only that scales provide a superior medium for the assessment of long-term stress but also that the addition of scale cortisone and DHEA may provide additional relevant information for such assessments.


Assuntos
Cortisona , Oncorhynchus mykiss , Animais , Hidrocortisona , Oncorhynchus mykiss/fisiologia , Cortisona/metabolismo , Androgênios , Desidroepiandrosterona/metabolismo , Mamíferos
18.
J Steroid Biochem Mol Biol ; 227: 106228, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427797

RESUMO

Human placental estrone (E1)/dehydroepiandrosterone (DHEA) sulfatase (human placental steroid sulfatase; hSTS) is an integral membrane protein of the endoplasmic reticulum. This Ca2+-dependent enzyme catalyzes the hydrolysis of sulfate esters of E1 and DHEA to yield the respective unconjugated steroids, which then act as precursors for the biosynthesis of 17ß-estradiol (E2) and dihydrotestosterone (DHT), respectively, the most potent forms of estrogens and androgens. hSTS is a key enzyme for the local production of E2 and DHT in the breast and the prostate. The enzyme is known to be responsible for maintaining high levels of estrogens in the breast tumor cells. The crystal structure of hSTS purified from human placenta has previously been reported at 2.6 Å resolution. Here we present the structure of hSTS determined at the superior 2.0 Å resolution bringing new clarity to the atomic architecture of the active site. The molecular basis of catalysis and steroid-protein interaction are revisited in light of the new data. We also reexamine the enzyme's quaternary association and its implication on the membrane integration. A secondary ligand binding pocket at the intermolecular interface and adjacent to the active site access channel, buried into the gill of the mushroom-shaped molecule, has been identified. Its role as well as that of a phosphate ion bound to an exposed histidine side chain are examined from the structure-function perspective. Higher resolution data also aids in the tracing of an important loop missing in the previous structure.


Assuntos
Placenta , Esteril-Sulfatase , Masculino , Humanos , Feminino , Gravidez , Placenta/metabolismo , Ligantes , Sulfatases , Estrona/metabolismo , Estrogênios , Di-Hidrotestosterona/metabolismo , Desidroepiandrosterona/metabolismo , Catálise
19.
Biochem Biophys Res Commun ; 634: 159-167, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36244114

RESUMO

Polycystic ovary syndrome (PCOS) is a complicated endocrinopathy affecting women at reproductive age. Increasing evidence has shown the anti-PCOS effect of electroacupuncture (EA), a modified approach of traditional Chinese medical therapy "acupuncture". However, the underlying mechanism of EA-alleviated PCOS waits further explored. In this study, experimental PCOS were induced in rats by dehydroepiandrosterone (DHEA) injection. Testosterone (T)-induced human ovarian granulosa cell (GC) line KGN was used to mimic PCOS in vitro. EA significantly alleviated histological changes and hormone disruption in PCOS rats. Besides, EA inhibited cell apoptosis, autophagy and the activation of endoplasmic reticulum (ER) stress-related PERK/eIF2α/ATF4/CHOP signaling in ovaries of PCOS rats. More interestingly, intermedin (IMD), a member of calcitonin gene-related peptide (CGRP), was evidently up-regulated in ovarian GCs after EA treatment, and its main bioactive form IMD1-53 suppressed cell apoptosis, autophagy and PERK/eIF2α/ATF4/CHOP signaling in T-induced KGN cells. Consistent with IMD1-53, ER stress inhibitor 4-PBA exerted an inhibitory effect on T-induced cell apoptosis and autophagy in KGN cells. Collectively, this study validates the protective effect of EA on DHEA-induced PCOS, and proposes that IMD relieved apoptosis and autophagy in T-induced granulosa cells via inhibiting ER stress.


Assuntos
Eletroacupuntura , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Ratos , Apoptose , Autofagia , Desidroepiandrosterona/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Células da Granulosa/metabolismo , Síndrome do Ovário Policístico/metabolismo , Estresse do Retículo Endoplasmático
20.
Endocrinology ; 163(12)2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36201601

RESUMO

Dehydroepiandrosterone (DHEA), an adrenal androgen precursor, can be metabolized in target tissues into active sex steroids. It has been proposed that DHEA supplementation might result in restoration of physiological local sex steroid levels, but knowledge on the effect of DHEA treatment on local sex steroid levels in multiple tissues is lacking. To determine the effects of DHEA on tissue-specific levels of sex steroids, we treated orchiectomized (ORX) male mice with DHEA for 3 weeks and compared them with vehicle-treated ORX mice and gonadal intact mice. Intra-tissue levels of sex steroids were analyzed in reproductive organs (seminal vesicles, prostate, m. levator ani), major body compartments (white adipose tissue, skeletal muscle, and brain), adrenals, liver, and serum using a sensitive and validated gas chromatography-mass spectrometry method. DHEA treatment restored levels of both testosterone (T) and dihydrotestosterone (DHT) to approximately physiological levels in male reproductive organs. In contrast, this treatment did not increase DHT levels in skeletal muscle or brain. In the liver, DHEA treatment substantially increased levels of T (at least 4-fold) and DHT (+536%, P < 0.01) compared with vehicle-treated ORX mice. In conclusion, we provide a comprehensive map of the effect of DHEA treatment on intra-tissue sex steroid levels in ORX mice with a restoration of physiological levels of androgens in male reproductive organs while DHT levels were not restored in the skeletal muscle or brain. This, and the unexpected supraphysiological androgen levels in the liver, may be a cause for concern considering the uncontrolled use of DHEA.


Assuntos
Androgênios , Di-Hidrotestosterona , Masculino , Camundongos , Animais , Di-Hidrotestosterona/farmacologia , Androgênios/farmacologia , Desidroepiandrosterona/farmacologia , Desidroepiandrosterona/metabolismo , Testosterona , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...